Uniform partition extensions,a generating functions perspective

In this paper, a bivariate generating function CF(x, y) =f(x)-yf(xy)1-yis investigated, where f(x)= n 0fnxnis a generating function satisfying the functional equation f(x) = 1 + r j=1 m i=j-1aij xif(x)j.In particular, we study lattice paths in which their end points are on the line y = 1. Rooted lat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2015-12, Vol.58 (12), p.2655-2670
Hauptverfasser: Li, ShanHai, Ma, Jun, Yeh, YeongNan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a bivariate generating function CF(x, y) =f(x)-yf(xy)1-yis investigated, where f(x)= n 0fnxnis a generating function satisfying the functional equation f(x) = 1 + r j=1 m i=j-1aij xif(x)j.In particular, we study lattice paths in which their end points are on the line y = 1. Rooted lattice paths are defined. It is proved that the function CF(x, y) is a generating function defined on some rooted lattice paths with end point on y = 1. So, by a simple and unified method, from the view of lattice paths, we obtain two combinatorial interpretations of this bivariate function and derive two uniform partitions on these rooted lattice paths.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-015-5050-0