Properties and Phase Shift Structure of (1-x)BT-(x)BNT Ceramics

In the research, the properties of barium titanate - bismuth sodium titanate [(1-x)BaTiO3-(x)Bi0.5Na0.5TiO3: (1-x)BT-(x)BNT] ceramics prepared by conventional mixed oxide method with various molecular weight of BNT or x between 0.0 and 0.3 were investigated. The optimum condition for calcined powder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key Engineering Materials 2016, Vol.675-676, p.615-618
1. Verfasser: Warangkanagool, Chompoonuch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the research, the properties of barium titanate - bismuth sodium titanate [(1-x)BaTiO3-(x)Bi0.5Na0.5TiO3: (1-x)BT-(x)BNT] ceramics prepared by conventional mixed oxide method with various molecular weight of BNT or x between 0.0 and 0.3 were investigated. The optimum condition for calcined powders of x = 0.0 was found at 900 °C for 2 h, and x = 0.1 - 0.3 were found at 850 °C for 2h. The calcined powders were pressed and sintered at 1000 – 1200 °C for 2h. The phase structure was examined by x-ray diffraction (XRD). The microstructure was examined by scanning electron microscopy (SEM). Density of sintered samples was measured by Archimedes method with distilled water as the fluid medium. It was found that, all various x of (1-x)BT-(x)BNT ceramics XRD patterns display the tetragonality increased with increasing sintering temperature. All the peaks shift to higher angles when increasing x value indicating the decrease of lattice parameter “a” and increase of lattice parameter “c”. The average grains size of (1-x)BT-(x)BNT ceramics was increased with increasing sintering temperature. The highest density was 5.53 g/cm3 and was obtained from the sample sintered at 1200 °C.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.675-676.615