Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts
Carbon‐supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant‐free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefi...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2016-04, Vol.22 (17), p.6111-6119 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon‐supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant‐free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt0 sites on the Pt metal particles are responsible for the rate‐limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method.
Olefination of alcohols: The first heterogeneous catalytic terminal and internal olefination of primary alcohols and methylenation of secondary alcohols with sulfones, a reusable carbon‐supported Pt catalyst, and KOtBu is reported (see scheme). |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.201505109 |