Slow radar target detection in heterogeneous clutter using thinned space-time adaptive processing

The authors address the problem of slow target detection in heterogeneous clutter through dimensionality reduction. Traditional approaches of implementing the space-time adaptive processing (STAP) require a large number of training data to estimate the clutter covariance matrix. To address the issue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET radar, sonar & navigation sonar & navigation, 2016-04, Vol.10 (4), p.726-734
Hauptverfasser: Wang, Xiangrong, Aboutanios, Elias, Amin, Moeness G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors address the problem of slow target detection in heterogeneous clutter through dimensionality reduction. Traditional approaches of implementing the space-time adaptive processing (STAP) require a large number of training data to estimate the clutter covariance matrix. To address the issue of limited training data especially in the heterogeneous scenarios, they propose a novel thinned STAP through selecting an optimum subset of antenna-pulse pairs that achieves the maximum output signal-to-clutter-plus-noise ratio. The proposed strategy utilises a new parameter, named spatial spectrum correlation coefficient, to analytically characterise the effect of space-time configuration on STAP performance and reduce the dimensionality of traditional STAP. Two algorithms are proposed to solve the antenna-pulse selection problem. The effectiveness of the proposed strategy is confirmed by extensive simulation results, especially by utilising the multi-channel airborne radar measurement data set.
ISSN:1751-8784
1751-8792
1751-8792
DOI:10.1049/iet-rsn.2015.0307