Fluorometric Detection of MicroRNA Using Isothermal Gene Amplification and Graphene Oxide
We have developed a facile fluorometric system for the detection of microRNA (miRNA), using rolling circle amplification (RCA), graphene oxide (GO), and fluorescently labeled peptide nucleic acid (F-PNA). The padlock probe DNA complementary to a target miRNA was selectively ligated to form circular...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2016-03, Vol.88 (6), p.2999-3003 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed a facile fluorometric system for the detection of microRNA (miRNA), using rolling circle amplification (RCA), graphene oxide (GO), and fluorescently labeled peptide nucleic acid (F-PNA). The padlock probe DNA complementary to a target miRNA was selectively ligated to form circular DNA that was then used as the template for RCA. F-PNAs complementary to the target miRNA were annealed to multiple sites of the isothermally amplified single-stranded RCA product (RCAP) containing multiple target miRNA sequences. This F-PNA/RCAP duplex is less adsorbed onto the GO monolayer, thus attenuating the quenching of F-PNA fluorescence by GO. In the absence of target miRNA (and hence the absence of RCA and duplex formation), the free F-PNA is completely adsorbed onto the GO monolayer and fluorescence quenching ensues. Thus, GO-based fluorescence detection coupled with isothermal gene amplification would be a simple and convenient method for the quantitative detection of miRNA. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.6b00046 |