Temporal patterns of biological dimethylsulfide (DMS) consumption during laboratory-induced phytoplankton bloom cycles

Phytoplankton bloom cycles were followed for 9 d in two 20 l carboy mesocosms filled with water from the offshore plume of Mobile Bay Alabama, USA, and incubated under fluorescent light. One of the blooms was enriched by addition of nitrate+phosphate (+nutrients), and both blooms were used to study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine ecology. Progress series (Halstenbek) 2004-04, Vol.271, p.77-86
Hauptverfasser: Zubkov, Mikhail, Linn, Laura J., Amann, Rudolf, Kiene, Ronald P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phytoplankton bloom cycles were followed for 9 d in two 20 l carboy mesocosms filled with water from the offshore plume of Mobile Bay Alabama, USA, and incubated under fluorescent light. One of the blooms was enriched by addition of nitrate+phosphate (+nutrients), and both blooms were used to study how dimethylsulfide (DMS) concentrations and biological consumption varied over the bloom cycles. Peaks of algal biomass (15–22 μg chlorophyllal–1) in the blooms were followed within 1 d by peaks of the DMS precursor, particulate dimethylsulfoniopropionate (DMSPp; 100–140 nM). DMS concentrations increased rapidly during the early bloom, rising from 1 nM on Day 1 up to 12 nM in the unamended carboy and up to 17 nM in the +nutrient carboy on Day 6. Maximum values for DMS concentrations, DMS consumption rates (as measured with35S-DMS), and bacterial production were observed during the early decline of phytoplankton biomass. DMS consumption rates were initially 0.8 nM d–1and increased to 3.1 nM d–1in the unamended carboy and to 9.1 nM d–1in the +nutrient carboy. Rate constants for DMS consumption (0.25–0.95 d–1) initially decreased as DMS concentrations increased, resulting in longer turnover times for DMS during the peak and early decline of the blooms. Assimilation of DMS-sulfur by bacterioplankton accounted for 4–22% of the total DMS consumption and higher rates of DMS assimilation occurred in the +nutrients bloom. Despite a bloom and decline of total heterotrophic bacterial abundances, bacterial community composition at the major phylogenetic group level remained relatively constant in both blooms, although the alpha proteobacteria showed a temporal increase in abundance in the +nutrient carboy. The concentration ratios of DMS:chlorophyllaand DMS:DMSP displayed non-linear, sigmoidal patterns over the bloom cycles and these ratios were not substantially affected by the nutrient amendment. Our results demonstrate that uncoupling of DMS production and biological consumption can occur early in a bloom cycle, causing DMS concentrations to rise significantly before biological consumption responds to draw down the DMS.
ISSN:0171-8630
1616-1599
DOI:10.3354/meps271077