Plasmon-induced resonance energy transfer for solar energy conversion
In Förster resonance energy transfer (FRET), energy non-radiatively transfers from a blue-shifted emitter to a red-shifted absorber by dipole–dipole coupling. This study shows that plasmonics enables the opposite transfer direction, transferring the plasmonic energy towards the short-wavelength dire...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2015-09, Vol.9 (9), p.601-607 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In Förster resonance energy transfer (FRET), energy non-radiatively transfers from a blue-shifted emitter to a red-shifted absorber by dipole–dipole coupling. This study shows that plasmonics enables the opposite transfer direction, transferring the plasmonic energy towards the short-wavelength direction to induce charge separation in a semiconductor. Plasmon-induced resonance energy transfer (PIRET) differs from FRET because of the lack of a Stoke's shift, non-local absorption effects and a strong dependence on the plasmon's dephasing rate and dipole moment. PIRET non-radiatively transfers energy through an insulating spacer layer, which prevents interfacial charge recombination losses and dephasing of the plasmon from hot-electron transfer. The distance dependence of dipole–dipole coupling is mapped out for a range of detuning across the plasmon resonance. PIRET can efficiently harvest visible and near-infrared sunlight with energy below the semiconductor band edge to help overcome the constraints of band-edge energetics for single semiconductors in photoelectrochemical cells, photocatalysts and photovoltaics.
Plasmon-induced resonance energy transfer is revealed and explored for solar energy harvesting from visible and near-infrared light. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/nphoton.2015.142 |