Peeking through the trapdoor: Historical biogeography of the Aegean endemic spider Cyrtocarenum Ausserer, 1871 with an estimation of mtDNA substitution rates for Mygalomorphae
[Display omitted] •mtDNA rates for mygalomorphs are higher compared to araneomorphs and other arthropods.•Aegean palaeogeography and palaeoclimate affected Cyrtocarenum diversification.•Major radiations occurred in the Middle Miocene and the Miocene–Pliocene boundary.•The two morphological species a...
Gespeichert in:
Veröffentlicht in: | Molecular phylogenetics and evolution 2016-05, Vol.98, p.300-313 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•mtDNA rates for mygalomorphs are higher compared to araneomorphs and other arthropods.•Aegean palaeogeography and palaeoclimate affected Cyrtocarenum diversification.•Major radiations occurred in the Middle Miocene and the Miocene–Pliocene boundary.•The two morphological species are genetically distinct but cryptic lineages may exist.
The Aegean region, located in the Eastern Mediterranean, is an area of rich biodiversity and endemism. Its position, geographical configuration and complex geological history have shaped the diversification history of many animal taxa. Mygalomorph spiders have drawn the attention of researchers, as excellent model systems for phylogeographical investigations. However, phylogeographic studies of spiders in the Aegean region are scarce. In this study, we focused on the phylogeography of the endemic ctenizid trap-door spider Cyrtocarenum Ausserer, 1871. The genus includes two morphologically described species: C. grajum (C.L. Koch, 1836) and C. cunicularium (Olivier, 1811). We sampled 60 specimens from the distributions of both species and analyzed four mitochondrial and two nuclear markers. Cyrtocarenum served as an example to demonstrate the importance of natural history traits in the inference of phylogeographic scenarios. The mtDNA substitution rates inferred for the genus are profoundly higher compared to araneomorph spiders and other arthropods, which seems tightly associated with their biology. We evaluate published mtDNA substitution rates followed in the literature for mygalomorph spiders and discuss potential pitfalls. Following gene tree (maximum likelihood, Bayesian inference) and species tree approaches (*BEAST), we reconstructed a time-calibrated phylogeny of the genus. These results, combined with a biogeographical ancestral-area analysis, helped build a biogeographic scenario that describes how the major palaeogeographic and palaeoclimatic events of the Aegean may have affected the distribution of Cyrtocarenum lineages. The diversification of the genus seems to have begun in the Middle Miocene in the present west Aegean area, while major phylogenetic events occurred at the Miocene–Pliocene boundary for C. cunicularium, probably related to the Messinian Salinity Crisis. Our results also demonstrate the clear molecular distinction of the two morphologically described species, but possible cryptic lineages may exist within C. cunicularium. |
---|---|
ISSN: | 1055-7903 1095-9513 |
DOI: | 10.1016/j.ympev.2016.01.021 |