Microscopic description of quantum Lorentz gas and extension of the Boltzmann equation to entire space-time scale

Irreversible processes of weakly coupled one-dimensional quantum perfect Lorentz gas are studied on the basis of the fundamental laws of physics in terms of the complex spectral analysis associated with the resonance state of the Liouville-von Neumann operator. Without any phenomenological operation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2016-02, Vol.93 (2), p.022132-022132, Article 022132
Hauptverfasser: Hashimoto, K, Kanki, K, Tanaka, S, Petrosky, T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Irreversible processes of weakly coupled one-dimensional quantum perfect Lorentz gas are studied on the basis of the fundamental laws of physics in terms of the complex spectral analysis associated with the resonance state of the Liouville-von Neumann operator. Without any phenomenological operations, such as a coarse-graining of space-time, or a truncation of the higher order correlation, we obtained irreversible processes in a purely dynamical basis in all space and time scale including the microscopic atomic interaction range that is much smaller than the mean-free length. Based on this solution, a limitation of the usual phenomenological Boltzmann equation, as well as an extension of the Boltzmann equation to entire space-time scale, is discussed.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.93.022132