Percolation thresholds for discrete-continuous models with nonuniform probabilities of bond formation
We introduce a class of discrete-continuous percolation models and an efficient Monte Carlo algorithm for computing their properties. The class is general enough to include well-known discrete and continuous models as special cases. We focus on a particular example of such a model, a nanotube model...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2016-02, Vol.93 (2), p.022127-022127, Article 022127 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a class of discrete-continuous percolation models and an efficient Monte Carlo algorithm for computing their properties. The class is general enough to include well-known discrete and continuous models as special cases. We focus on a particular example of such a model, a nanotube model of disintegration of activated carbon. We calculate its exact critical threshold in two dimensions and obtain a Monte Carlo estimate in three dimensions. Furthermore, we use this example to analyze and characterize the efficiency of our algorithm, by computing critical exponents and properties, finding that it compares favorably to well-known algorithms for simpler systems. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.93.022127 |