Non-classical photon correlation in a two-dimensional photonic lattice
Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it rema...
Gespeichert in:
Veröffentlicht in: | Optics express 2016-06, Vol.24 (12), p.12607-12616 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to 0.890 ± 0.001. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated photonic chips. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.24.012607 |