Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths

Active plasmonic band-stop filters based on single- and double-layer doped graphene metamaterials at the THz wavelengths are proposed and investigated numerically by using the finite-difference time-domain (FDTD) method. The metamaterial unit cell structure is composed of two parallel graphene nanos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2016-06, Vol.24 (13), p.14344-14351
Hauptverfasser: Wei, Zhongchao, Li, Xianping, Yin, Jianjun, Huang, Rong, Liu, Yuebo, Wang, Wei, Liu, Hongzhan, Meng, Hongyun, Liang, Ruisheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active plasmonic band-stop filters based on single- and double-layer doped graphene metamaterials at the THz wavelengths are proposed and investigated numerically by using the finite-difference time-domain (FDTD) method. The metamaterial unit cell structure is composed of two parallel graphene nanoscale ribbons. Simulated results exhibit that significant resonance wavelength shifts can be achieved with a slight variation of the doping concentration of the graphene ribbons. Besides, the asymmetry double-layer graphene metamaterial device has two apparent filter dips while the symmetry single-, double-layer and asymmetry single-layer graphene metamaterial devices just only one. The metamaterials with symmetry single-layer and asymmetry double-layer graphene can be used as a high-sensitivity refractive sensor with the sensitivity up to 5100 nm/RIU and a two-circuit switch, respectively. These prospects pave the way towards ultrafast active graphene-based plasmonic devices for THz applications.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.24.014344