TGFβ/BMP activate the smooth muscle/bone differentiation programs in mesoangioblasts

Mesoangioblasts are vessel-derived stem cells that can be induced to differentiate into different cell types of the mesoderm such as muscle and bone. The gene expression profile of four clonal derived lines of mesoangioblasts was determined by DNA micro-array analysis: it was similar in the four lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2004-09, Vol.117 (19), p.4377-4388
Hauptverfasser: Tagliafico, Enrico, Brunelli, Silvia, Bergamaschi, Anna, De Angelis, Luciana, Scardigli, Raffaella, Galli, Daniela, Battini, Renata, Bianco, Paolo, Ferrari, Sergio, Cossu, Giulio, Ferrari, Stefano
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesoangioblasts are vessel-derived stem cells that can be induced to differentiate into different cell types of the mesoderm such as muscle and bone. The gene expression profile of four clonal derived lines of mesoangioblasts was determined by DNA micro-array analysis: it was similar in the four lines but different from 10T1/2 embryonic fibroblasts, used as comparison. Many known genes expressed by mesoangioblasts belong to response pathways to developmental signalling molecules, such as Wnt or TGFβ/BMP. Interestingly, mesoangioblasts express receptors of the TGFβ/BMP family and several Smads and, accordingly, differentiate very efficiently into smooth muscle cells in response to TGFβ and into osteoblasts in response to BMP. In addition, insulin signalling promotes adipogenic differentiation, possibly through the activation of IGF-R. Several Wnts and Frizzled, Dishevelled and Tcfs are expressed, suggesting the existence of an autocrine loop for proliferation and indeed, forced expression of Frzb-1 inhibits cell division. Mesoangioblasts also express many neuro-ectodermal genes and yet undergo only abortive neurogenesis, even after forced expression of neurogenin 1 or 2, MASH or NeuroD. Finally, mesoangioblasts express several pro-inflammatory genes, cytokines and cytokine receptors, which may explain their ability to be recruited by tissue inflammation. Our data define a unique phenotype for mesoangioblasts, explain several of their biological features and set the basis for future functional studies on the role of these cells in tissue histogenesis and repair.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.01291