Mixed carbonate-siliciclastic infilling of a Neogene carbonate shelf-valley system: Tampa Bay, West-Central Florida
The shelf-valley system underlying Tampa Bay, Florida’s largest estuary, is situated in the middle of the Neogene carbonate Florida Platform. Compared to well-studied fluvially incised coastal plain valley systems, this shelf-valley system is unique in its karstic origin and its alternating carbonat...
Gespeichert in:
Veröffentlicht in: | Marine geology 2003-09, Vol.200 (1), p.125-156 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The shelf-valley system underlying Tampa Bay, Florida’s largest estuary, is situated in the middle of the Neogene carbonate Florida Platform. Compared to well-studied fluvially incised coastal plain valley systems, this shelf-valley system is unique in its karstic origin and its alternating carbonate-siliciclastic infill. A complex record of sea-level changes, paleo-fluvial variability and marine processes have controlled the timing and mechanisms of this ‘compound’ shelf-valley infill. A dense grid of high-resolution, single-channel seismic data were collected at the mouth of Tampa Bay, in an attempt to define this stratigraphy, determine the controls on deposition, and define the underlying structure of this shelf-valley system. The seismic data were correlated with nearby wells and boreholes for lithologic and age control. Sequence stratigraphic methods were incorporated in order to develop an integrated chronostratigraphy for the depositional infilling of the shelf-valley system. Five seismic sequences were identified. Sequence boundaries generally show erosional truncation and karstification, with downlap of overlying sequences. Structure contour and isopach maps indicate that the Tampa Bay shelf-valley system has remained in essentially the same location since its formation in the early Miocene, although the provenance of sedimentary infill has changed. This change is due to increasing amounts of siliciclastic material during the Neogene. Seismic facies interpretations indicate lower-energy, northward prograding deposition dominated by predominantly carbonate sediments within the lowest Sequence A. Higher energy, siliciclastic fluvio-deltaic deposition within sequences B and C originates to the east and northeast of the shelf-valley system related to a Pliocene pulse of sedimentation onto the Florida Platform. Finally, marine processes (longshore transport, ebb-tidal delta formation) dominate the upper two sequences (D and E), reworking these siliciclastic sediments into a spatially mixed carbonate-siliciclastic depositional setting. |
---|---|
ISSN: | 0025-3227 1872-6151 |
DOI: | 10.1016/S0025-3227(03)00180-4 |