Ku70 acetylation and modulation of c-Myc/ATF4/CHOP signaling axis by SIRT1 inhibition lead to sensitization of HepG2 cells to TRAIL through induction of DR5 and down-regulation of c-FLIP
In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway, and...
Gespeichert in:
Veröffentlicht in: | The international journal of biochemistry & cell biology 2013-03, Vol.45 (3), p.711-723 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway, and subsequently enhanced the cytotoxic and apoptotic effects of TRAIL on HepG2 cells. Interestingly, SIRT1 interacted directly with c-FLIPL and Ku70, and treatment with SIRT1 inhibitor enhanced acetylation of Ku70 and subsequently decreased its binding to c-FLIP. And this was followed by degradation of c-FLIP. Moreover, Ku70−/− MEF and Ku70-knockdown HepG2 cells showed the increased levels of c-Myc, ATF4, CHOP, and DR5 and decreased level of c-FLIP. These results were followed by increased sensitivity of Ku70−/− MEF cells and Ku70-knockdown HepG2 cells to TRAIL compared with their control cells. These findings reveal for the first time that SIRT1 inhibition increases Ku70 acetylation, and the acetylated Ku70 with a decreased function mediates the induction of DR5 and the down-regulation of c-FLIP by up-regulating c-Myc/ATF4/CHOP pathway, and consequently promotes the TRAIL-induced apoptosis of HepG2 cells. This study provides important mechanistic insight of the synergism exhibited by SIRT1 inhibition and TRAIL. |
---|---|
ISSN: | 1357-2725 1878-5875 |
DOI: | 10.1016/j.biocel.2012.12.005 |