Beyond Poisson–Boltzmann: Numerical Sampling of Charge Density Fluctuations

We present a method aimed at sampling charge density fluctuations in Coulomb systems. The derivation follows from a functional integral representation of the partition function in terms of charge density fluctuations. Starting from the mean-field solution given by the Poisson–Boltzmann equation, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2016-07, Vol.120 (26), p.6270-6277
Hauptverfasser: Poitevin, Frédéric, Delarue, Marc, Orland, Henri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method aimed at sampling charge density fluctuations in Coulomb systems. The derivation follows from a functional integral representation of the partition function in terms of charge density fluctuations. Starting from the mean-field solution given by the Poisson–Boltzmann equation, an original approach is proposed to numerically sample fluctuations around it, through the propagation of a Langevin-like stochastic partial differential equation (SPDE). The diffusion tensor of the SPDE can be chosen so as to avoid the numerical complexity linked to long-range Coulomb interactions, effectively rendering the theory completely local. A finite-volume implementation of the SPDE is described, and the approach is illustrated with preliminary results on the study of a system made of two like-charge ions immersed in a bath of counterions.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.6b02650