Direct comparison of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT in the follow-up of patients with neuroendocrine tumour treated with the first full peptide receptor radionuclide therapy cycle

To determine the value of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT for initial and follow-up evaluation of patients with neuroendocrine tumour (NET) treated with peptide receptor radionuclide therapy (PRRT). We evaluated 66 patients who had histologically proven NET and underwent both PRRT and three com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2016-08, Vol.43 (9), p.1585-1592
Hauptverfasser: Nilica, Bernhard, Waitz, Dietmar, Stevanovic, Vlado, Uprimny, Christian, Kendler, Dorota, Buxbaum, Sabine, Warwitz, Boris, Gerardo, Llanos, Henninger, Benjamin, Virgolini, Irene, Rodrigues, Margarida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine the value of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT for initial and follow-up evaluation of patients with neuroendocrine tumour (NET) treated with peptide receptor radionuclide therapy (PRRT). We evaluated 66 patients who had histologically proven NET and underwent both PRRT and three combined (68)Ga-DOTA-TOC and (18)F-FDG PET/CT studies. (68)Ga-DOTA-TOC PET/CT was performed before PRRT, 3 months after completion of PRRT and after a further 6 - 9 months. (18)F-FDG PET/CT was done within 2 months of (68)Ga-DOTA-TOC PET/CT. Follow-up ranged from 11.8 to 80.0 months (mean 34.5 months). All patients were (68)Ga-DOTA-TOC PET-positive initially and at follow-up after the first full PRRT cycle. Overall, 62 of the 198 (18)F-FDG PET studies (31 %) were true-positive in 38 of the 66 patients (58 %). Of the 66 patients, 28 (5 grade 1, 23 grade 2) were (18)F-FDG-negative initially and during follow-up (group 1), 24 (5 grade 1, 13 grade 2, 6 grade 3) were (18)F-FDG-positive initially and during follow-up (group 2), 9 patients (2 grade 1, 6 grade 2, 1 grade 3) were (18)F-FDG-negative initially but (18)F-FDG-positive during follow-up (group 3), and 5 patients (all grade 2) were (18)F-FDG-positive initially but (18)F-FDG-negative during follow-up (group 4).(18)F-FDG PET showed more and/or larger metastases than (68)Ga-DOTA-TOC PET in five patients of group 2 and four patients of group 3, all with progressive disease. In three patients with progressive disease who died during follow-up tumour SUVmax increased by 41 - 82 % from the first to the last follow-up investigation. In NET patients, the presence of (18)F-FDG-positive tumours correlates strongly with a higher risk of progression. Initially, patients with (18)F-FDG-negative NET may show (18)F-FDG-positive tumours during follow-up. Also patients with grade 1 and grade 2 NET may have (18)F-FDG-positive tumours. Therefore, (18)F-FDG PET/CT is a complementary tool to (68)Ga-DOTA-TOC PET/CT with clinical relevance for molecular investigation.
ISSN:1619-7089
DOI:10.1007/s00259-016-3328-2