The Use of Biomarkers in Daphnia magna Toxicity Testing V. In Vivo Alterations in the Carbohydrate Metabolism of Daphnia magna Exposed to Sublethal Concentrations of Mercury and Lindane

Aspects of the carbohydrate metabolism of Daphnia magna exposed for 48 and 96 h to sublethal concentrations of mercury and lindane were investigated. General as well as toxicant-specific perturbations in the intermediary metabolism were observed. Both model toxicants caused an increase in glycolytic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2001-03, Vol.48 (3), p.223-234
Hauptverfasser: De Coen, W.M., Janssen, C.R., Segner, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aspects of the carbohydrate metabolism of Daphnia magna exposed for 48 and 96 h to sublethal concentrations of mercury and lindane were investigated. General as well as toxicant-specific perturbations in the intermediary metabolism were observed. Both model toxicants caused an increase in glycolytic and hexose-monophosphate shunt activity. Mercury exposure increased lactate dehydrogenase and isocitrate activity (only after 96 h), while lindane exposure, on the contrary, inhibited the cellular lactate formation and increased the Krebs' cycle activity (only after 48 h). Daphnids exposed to sublethal mercury concentrations clearly exhibited increased glycogenolytic activity, while in lindane-exposed organisms mainly glycogen phosphorylase inhibition was detected. The short-term enzyme-based effect levels (48–96 h LOEC and EC10 values) were compared with the effects on the population dynamics. This evaluation for both model toxicants suggests that threshold levels (LOEC or EC10 values) based on pyruvate kinase activity after 48 and 96 h of exposure could be potential early warning signals for long-term effects. A set of enzymatic endpoints, based on the intermediary metabolism, is suggested to characterize the metabolic state of the daphnids.
ISSN:0147-6513
1090-2414
DOI:10.1006/eesa.2000.2009