Genetic evidence for involvement of two distinct nonhomologous end-joining pathways in repair of topoisomerase II-mediated DNA damage

In vertebrate cells, DNA double-strand breaks are efficiently repaired by homologous recombination or nonhomologous end-joining (NHEJ). The latter pathway relies on Ku (the Ku70/Ku86 heterodimer), DNA-PKcs, Artemis, Xrcc4, and DNA ligase IV (Lig4). Here, we show that a human pre-B cell line nullizyg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2004-06, Vol.318 (4), p.856-861
Hauptverfasser: Adachi, Noritaka, Iiizumi, Susumu, So, Sairei, Koyama, Hideki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In vertebrate cells, DNA double-strand breaks are efficiently repaired by homologous recombination or nonhomologous end-joining (NHEJ). The latter pathway relies on Ku (the Ku70/Ku86 heterodimer), DNA-PKcs, Artemis, Xrcc4, and DNA ligase IV (Lig4). Here, we show that a human pre-B cell line nullizygous for Lig4 exhibits hypersensitivity to topoisomerase II (Top2) inhibitors, demonstrating a crucial role for the NHEJ pathway in repair of Top2-induced DNA damage in vertebrates. We also show that in the chicken DT40 cell line, all NHEJ mutants (i.e., Ku70-, Lig4-, and DNA-PKcs-null cells) are equally hypersensitive to the Top2 inhibitor ICRF-193, indicating that the drug-induced damage is repaired by NHEJ involving DNA-PKcs. Intriguingly, however, DNA-PKcs-null cells display considerably less severe phenotype than other NHEJ mutants in terms of hypersensitivity to VP-16, a Top2 poison that stabilizes cleavable complexes. The results indicate that two distinct NHEJ pathways, involving or not involving DNA-PKcs, are important for the repair of VP-16-induced DNA damage, providing additional evidence for the biological relevance of DNA-PKcs-independent NHEJ. Our results provide significant insights into the mechanisms of repair of Top2-mediated DNA damage, with implications for chemotherapy involving Top2 inhibitors.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2004.04.099