CONCOLOR: Constrained Non-Convex Low-Rank Model for Image Deblocking
Due to independent and coarse quantization of transform coefficients in each block, block-based transform coding usually introduces visually annoying blocking artifacts at low bitrates, which greatly prevents further bit reduction. To alleviate the conflict between bit reduction and quality preserva...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2016-03, Vol.25 (3), p.1246-1259 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to independent and coarse quantization of transform coefficients in each block, block-based transform coding usually introduces visually annoying blocking artifacts at low bitrates, which greatly prevents further bit reduction. To alleviate the conflict between bit reduction and quality preservation, deblocking as a post-processing strategy is an attractive and promising solution without changing existing codec. In this paper, in order to reduce blocking artifacts and obtain high-quality image, image deblocking is formulated as an optimization problem within maximum a posteriori framework, and a novel algorithm for image deblocking using constrained non-convex low-rank model is proposed. The l p (0 |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2016.2515985 |