An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime

Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2016-06, Vol.87 (6), p.065107-065107
Hauptverfasser: Vajente, G., Quintero, E. A., Ni, X., Arai, K., Gustafson, E. K., Robertson, N. A., Sanchez, E. J., Greer, J. R., Adhikari, R. X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors’ final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10−15 m/ Hz in the frequency range of 10–1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4953114