Experimental Research on Differentiation-Inducing Growth of Nerve Lateral Bud by HUC-MSCs Chitosan Composite Conduit
This study is intended to explore the role of human umbilical-cord-derived mesenchymal stem cells (HUC-MSCs) in nerve end-to-side anastomosis, as well as in the induction and promotion of growth of nerve lateral bud. The chitosan nerve conduit was prepared based on the biological characteristics of...
Gespeichert in:
Veröffentlicht in: | Cell biochemistry and biophysics 2015-11, Vol.73 (2), p.305-311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study is intended to explore the role of human umbilical-cord-derived mesenchymal stem cells (HUC-MSCs) in nerve end-to-side anastomosis, as well as in the induction and promotion of growth of nerve lateral bud. The chitosan nerve conduit was prepared based on the biological characteristics of chitosan, and the nerve conduit was filled with HUC-MSCs, and was used to bridge the nerve end-to-side anastomotic stoma. The experimental animals were randomly assigned into three groups (10 in each group), and the nerve end-to-side anastomosis was conducted: (1) group A (control group): traditional tibial nerve–common peroneal nerve end-to-side anastomosis; (2) group B (experimental group 1): tibial nerve–common peroneal nerve end-to-side anastomotic stoma bridged with chitosan nerve conduit; (3) group C (experimental group 2): tibial nerve–common peroneal nerve end-to-side anastomotic stoma bridged by chitosan nerve conduit filled with HUC-MSCs. General morphological observation, nerve electrophysiology, and anti-S-100 immunohistochemistry were performed. All experimental animals survived, and no infections were found at operative incisions. The nerve continuity was in good condition through visual observation when sampling, which is mild adhesion to the surrounding tissue and easy to be separated. 12 W HUC-MSCs chitosan composite nerve conduits were degraded completely after operation. Electrophysiological test showed that the nerve conduction velocity (NCV) in group C was significantly higher than that in group A or group B (
p
|
---|---|
ISSN: | 1085-9195 1559-0283 |
DOI: | 10.1007/s12013-015-0578-8 |