Stochastic modified Boussinesq approximate equation driven by fractional Brownian motion
The current paper is devoted to the dynamics of a stochastic modified Boussinesq approximate equation driven by fractional Brownian motion with H ∈ ( 1 2 , 1 ) . Based on the different diffusion operators △ 2 and −△ in the stochastic system, we combine two types of operators Φ 1 = I and a Hilbert-Sc...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2014-08, Vol.2014 (1), p.1-21, Article 207 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The current paper is devoted to the dynamics of a stochastic modified Boussinesq approximate equation driven by fractional Brownian motion with
H
∈
(
1
2
,
1
)
. Based on the different diffusion operators
△
2
and −△ in the stochastic system, we combine two types of operators
Φ
1
=
I
and a Hilbert-Schmidt operator
Φ
2
to guarantee the convergence of the corresponding Wiener-type stochastic integrals. Then the existence and regularity of the stochastic convolution for the corresponding additive linear stochastic equation can be shown. By the Banach modified fixed point theorem in the selected intersection space, the existence and uniqueness of the global mild solution are obtained. Finally, the existence of a random attractor for the random dynamical system generated by the mild solution for the modified Boussinesq approximation equation is also established.
MSC:
35B40, 35Q35, 76D05. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/1687-1847-2014-207 |