A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds

In this paper, we present a new approach to the proximal point method in the Riemannian context. In particular, without requiring any restrictive assumptions about the sign of the sectional curvature of the manifold, we obtain full convergence for any bounded sequence generated by the proximal point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2016-03, Vol.168 (3), p.743-755
Hauptverfasser: de Carvalho Bento, Glaydston, da Cruz Neto, João Xavier, Oliveira, Paulo Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a new approach to the proximal point method in the Riemannian context. In particular, without requiring any restrictive assumptions about the sign of the sectional curvature of the manifold, we obtain full convergence for any bounded sequence generated by the proximal point method, in the case that the objective function satisfies the Kurdyka–Lojasiewicz inequality. In our approach, we extend the applicability of the proximal point method to be able to solve any problem that can be formulated as the minimizing of a definable function, such as one that is analytic, restricted to a compact manifold, on which the sign of the sectional curvature is not necessarily constant.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-015-0861-2