Generalizations of the Szemerédi–Trotter Theorem

We generalize the Szemerédi–Trotter incidence theorem, to bound the number of complete flags in higher dimensions. Specifically, for each i = 0 , 1 , … , d - 1 , we are given a finite set S i of i -flats in R d or in C d , and a (complete) flag is a tuple ( f 0 , f 1 , … , f d - 1 ) , where f i ∈ S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2016-04, Vol.55 (3), p.571-593
Hauptverfasser: Kalia, Saarik, Sharir, Micha, Solomon, Noam, Yang, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the Szemerédi–Trotter incidence theorem, to bound the number of complete flags in higher dimensions. Specifically, for each i = 0 , 1 , … , d - 1 , we are given a finite set S i of i -flats in R d or in C d , and a (complete) flag is a tuple ( f 0 , f 1 , … , f d - 1 ) , where f i ∈ S i for each i and f i ⊂ f i + 1 for each i = 0 , 1 , … , d - 2 . Our main result is an upper bound on the number of flags which is tight in the worst case. We also study several other kinds of incidence problems, including (i) incidences between points and lines in R 3 such that among the lines incident to a point, at most O (1) of them can be coplanar, (ii) incidences with Legendrian lines in R 3 , a special class of lines that arise when considering flags that are defined in terms of other groups, and (iii) flags in R 3 (involving points, lines, and planes), where no given line can contain too many points or lie on too many planes. The bound that we obtain in (iii) is nearly tight in the worst case. Finally, we explore a group theoretic interpretation of flags, a generalized version of which leads us to new incidence problems.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-016-9759-5