Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations

In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2015-12, Vol.38 (18), p.5034-5047
Hauptverfasser: Geng, Yongcai, Jiang, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5047
container_issue 18
container_start_page 5034
container_title Mathematical methods in the applied sciences
container_volume 38
creator Geng, Yongcai
Jiang, Peng
description In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.3422
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800501965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3923667951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4682-e5c961b4c5351f3703aa0af4f926171e0e05b3226cc03f1bf9efbd535215cea03</originalsourceid><addsrcrecordid>eNp10F9LHDEUBfAgFdyq4EcY6IsvY-9NJsnOo7XWLf4ptIrgS8hmEjZ2ZuImM9X99s26YrHg04XDjwP3EHKAcIQA9HPX6SNWUbpFJgh1XWIlxQcyAZRQVhSrHfIxpXsAmCLSCfn5qwthWBQptOPgQ58KF2IRels2vrN9ypFui2hbPfg_Pg3eFFE3Xq9tsVg1MTSrXnc5tsvxOU17ZNvpNtn9l7tLbr6dXp_MyosfZ99Pji9KU4kpLS03tcB5ZTjj6JgEpjVoV7maCpRowQKfM0qFMcAczl1t3bzJmCI3VgPbJYeb3ocYlqNNg-p8MrZtdW_DmBROAThgLXimn_6j92GM-bOsJJd8CpKLf4UmhpSideoh-k7HlUJQ63FVHletx8203NBH39rVu05dXh6_9XlC-_TqdfythGSSq9urMyVmUn49v5upL-wvuLCKZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757580756</pqid></control><display><type>article</type><title>Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Geng, Yongcai ; Jiang, Peng</creator><creatorcontrib>Geng, Yongcai ; Jiang, Peng</creatorcontrib><description>In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3422</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>Eigenvectors ; Energy methods ; Hydrodynamic equations ; Hyperbolic systems ; Iterative methods ; Mathematical analysis ; one-dimensional ; relativistic equations of radiation hydrodynamics ; smooth solutions ; Symmetry</subject><ispartof>Mathematical methods in the applied sciences, 2015-12, Vol.38 (18), p.5034-5047</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4682-e5c961b4c5351f3703aa0af4f926171e0e05b3226cc03f1bf9efbd535215cea03</citedby><cites>FETCH-LOGICAL-c4682-e5c961b4c5351f3703aa0af4f926171e0e05b3226cc03f1bf9efbd535215cea03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3422$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3422$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Geng, Yongcai</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><title>Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Eigenvectors</subject><subject>Energy methods</subject><subject>Hydrodynamic equations</subject><subject>Hyperbolic systems</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>one-dimensional</subject><subject>relativistic equations of radiation hydrodynamics</subject><subject>smooth solutions</subject><subject>Symmetry</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10F9LHDEUBfAgFdyq4EcY6IsvY-9NJsnOo7XWLf4ptIrgS8hmEjZ2ZuImM9X99s26YrHg04XDjwP3EHKAcIQA9HPX6SNWUbpFJgh1XWIlxQcyAZRQVhSrHfIxpXsAmCLSCfn5qwthWBQptOPgQ58KF2IRels2vrN9ypFui2hbPfg_Pg3eFFE3Xq9tsVg1MTSrXnc5tsvxOU17ZNvpNtn9l7tLbr6dXp_MyosfZ99Pji9KU4kpLS03tcB5ZTjj6JgEpjVoV7maCpRowQKfM0qFMcAczl1t3bzJmCI3VgPbJYeb3ocYlqNNg-p8MrZtdW_DmBROAThgLXimn_6j92GM-bOsJJd8CpKLf4UmhpSideoh-k7HlUJQ63FVHletx8203NBH39rVu05dXh6_9XlC-_TqdfythGSSq9urMyVmUn49v5upL-wvuLCKZw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Geng, Yongcai</creator><creator>Jiang, Peng</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201512</creationdate><title>Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations</title><author>Geng, Yongcai ; Jiang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4682-e5c961b4c5351f3703aa0af4f926171e0e05b3226cc03f1bf9efbd535215cea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Eigenvectors</topic><topic>Energy methods</topic><topic>Hydrodynamic equations</topic><topic>Hyperbolic systems</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>one-dimensional</topic><topic>relativistic equations of radiation hydrodynamics</topic><topic>smooth solutions</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Yongcai</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Yongcai</au><au>Jiang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2015-12</date><risdate>2015</risdate><volume>38</volume><issue>18</issue><spage>5034</spage><epage>5047</epage><pages>5034-5047</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.3422</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2015-12, Vol.38 (18), p.5034-5047
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_1800501965
source Wiley Online Library Journals Frontfile Complete
subjects Eigenvectors
Energy methods
Hydrodynamic equations
Hyperbolic systems
Iterative methods
Mathematical analysis
one-dimensional
relativistic equations of radiation hydrodynamics
smooth solutions
Symmetry
title Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20solutions%20for%20one-dimensional%20relativistic%20radiation%20hydrodynamic%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Geng,%20Yongcai&rft.date=2015-12&rft.volume=38&rft.issue=18&rft.spage=5034&rft.epage=5047&rft.pages=5034-5047&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3422&rft_dat=%3Cproquest_cross%3E3923667951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757580756&rft_id=info:pmid/&rfr_iscdi=true