Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations
In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativi...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2015-12, Vol.38 (18), p.5034-5047 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5047 |
---|---|
container_issue | 18 |
container_start_page | 5034 |
container_title | Mathematical methods in the applied sciences |
container_volume | 38 |
creator | Geng, Yongcai Jiang, Peng |
description | In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.3422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800501965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3923667951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4682-e5c961b4c5351f3703aa0af4f926171e0e05b3226cc03f1bf9efbd535215cea03</originalsourceid><addsrcrecordid>eNp10F9LHDEUBfAgFdyq4EcY6IsvY-9NJsnOo7XWLf4ptIrgS8hmEjZ2ZuImM9X99s26YrHg04XDjwP3EHKAcIQA9HPX6SNWUbpFJgh1XWIlxQcyAZRQVhSrHfIxpXsAmCLSCfn5qwthWBQptOPgQ58KF2IRels2vrN9ypFui2hbPfg_Pg3eFFE3Xq9tsVg1MTSrXnc5tsvxOU17ZNvpNtn9l7tLbr6dXp_MyosfZ99Pji9KU4kpLS03tcB5ZTjj6JgEpjVoV7maCpRowQKfM0qFMcAczl1t3bzJmCI3VgPbJYeb3ocYlqNNg-p8MrZtdW_DmBROAThgLXimn_6j92GM-bOsJJd8CpKLf4UmhpSideoh-k7HlUJQ63FVHletx8203NBH39rVu05dXh6_9XlC-_TqdfythGSSq9urMyVmUn49v5upL-wvuLCKZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757580756</pqid></control><display><type>article</type><title>Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Geng, Yongcai ; Jiang, Peng</creator><creatorcontrib>Geng, Yongcai ; Jiang, Peng</creatorcontrib><description>In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3422</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>Eigenvectors ; Energy methods ; Hydrodynamic equations ; Hyperbolic systems ; Iterative methods ; Mathematical analysis ; one-dimensional ; relativistic equations of radiation hydrodynamics ; smooth solutions ; Symmetry</subject><ispartof>Mathematical methods in the applied sciences, 2015-12, Vol.38 (18), p.5034-5047</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4682-e5c961b4c5351f3703aa0af4f926171e0e05b3226cc03f1bf9efbd535215cea03</citedby><cites>FETCH-LOGICAL-c4682-e5c961b4c5351f3703aa0af4f926171e0e05b3226cc03f1bf9efbd535215cea03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3422$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3422$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Geng, Yongcai</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><title>Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>Eigenvectors</subject><subject>Energy methods</subject><subject>Hydrodynamic equations</subject><subject>Hyperbolic systems</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>one-dimensional</subject><subject>relativistic equations of radiation hydrodynamics</subject><subject>smooth solutions</subject><subject>Symmetry</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10F9LHDEUBfAgFdyq4EcY6IsvY-9NJsnOo7XWLf4ptIrgS8hmEjZ2ZuImM9X99s26YrHg04XDjwP3EHKAcIQA9HPX6SNWUbpFJgh1XWIlxQcyAZRQVhSrHfIxpXsAmCLSCfn5qwthWBQptOPgQ58KF2IRels2vrN9ypFui2hbPfg_Pg3eFFE3Xq9tsVg1MTSrXnc5tsvxOU17ZNvpNtn9l7tLbr6dXp_MyosfZ99Pji9KU4kpLS03tcB5ZTjj6JgEpjVoV7maCpRowQKfM0qFMcAczl1t3bzJmCI3VgPbJYeb3ocYlqNNg-p8MrZtdW_DmBROAThgLXimn_6j92GM-bOsJJd8CpKLf4UmhpSideoh-k7HlUJQ63FVHletx8203NBH39rVu05dXh6_9XlC-_TqdfythGSSq9urMyVmUn49v5upL-wvuLCKZw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Geng, Yongcai</creator><creator>Jiang, Peng</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201512</creationdate><title>Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations</title><author>Geng, Yongcai ; Jiang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4682-e5c961b4c5351f3703aa0af4f926171e0e05b3226cc03f1bf9efbd535215cea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Eigenvectors</topic><topic>Energy methods</topic><topic>Hydrodynamic equations</topic><topic>Hyperbolic systems</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>one-dimensional</topic><topic>relativistic equations of radiation hydrodynamics</topic><topic>smooth solutions</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Yongcai</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Yongcai</au><au>Jiang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2015-12</date><risdate>2015</risdate><volume>38</volume><issue>18</issue><spage>5034</spage><epage>5047</epage><pages>5034-5047</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.3422</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2015-12, Vol.38 (18), p.5034-5047 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800501965 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Eigenvectors Energy methods Hydrodynamic equations Hyperbolic systems Iterative methods Mathematical analysis one-dimensional relativistic equations of radiation hydrodynamics smooth solutions Symmetry |
title | Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20solutions%20for%20one-dimensional%20relativistic%20radiation%20hydrodynamic%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Geng,%20Yongcai&rft.date=2015-12&rft.volume=38&rft.issue=18&rft.spage=5034&rft.epage=5047&rft.pages=5034-5047&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3422&rft_dat=%3Cproquest_cross%3E3923667951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757580756&rft_id=info:pmid/&rfr_iscdi=true |