Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations

In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2015-12, Vol.38 (18), p.5034-5047
Hauptverfasser: Geng, Yongcai, Jiang, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.3422