Smooth solutions for one-dimensional relativistic radiation hydrodynamic equations
In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativi...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2015-12, Vol.38 (18), p.5034-5047 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this research article, we investigated the existence of local smooth solutions for relativistic radiation hydrodynamic equations in one spatial variable. The proof is based on a classical iteration method and the Banach contraction mapping principle. However, because of the complexity of relativistic radiation hydrodynamics equations, we first rewrite this system into a semilinear form to construct the iteration scheme and then use left eigenvectors to decouple the system instead of applying standard energy method on symmetric hyperbolic systems. Different from multidimensional case, we just use the characteristic method, which can keep the properties of the initial data. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3422 |