Imaging-based amplitude laser beam shaping for material processing by 2D reflectivity tuning of a spatial light modulator
We have demonstrated an imaging-based amplitude laser-beam-shaping technique for material processing by 2D reflectivity tuning of a spatial light modulator. Intensity masks with 256 gray levels were designed to shape the input laser beam in the outline profile and inside intensity distribution. Squa...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2016-02, Vol.55 (5), p.1095-1100 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have demonstrated an imaging-based amplitude laser-beam-shaping technique for material processing by 2D reflectivity tuning of a spatial light modulator. Intensity masks with 256 gray levels were designed to shape the input laser beam in the outline profile and inside intensity distribution. Squared and circular flattop beam shapes were obtained at the diffractive near-field and then reconstructed at an image plane of an f-theta lens (f∼100 mm). The observed intensity distribution inside the beam-shaping geometry was much more even than using binary masks. The ablation footprint well matches the desired beam shape. |
---|---|
ISSN: | 0003-6935 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.55.001095 |