Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm

Photodynamic therapy is the main technique applied for surface carcinoma treatment. This technique employs singlet oxygen generated via a laser excited photosensitizer as a main damaging agent. However, prolonged sensitivity to intensive light, relatively low tissue penetration by activating light t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in medical science 2016-04, Vol.31 (3), p.405-413
Hauptverfasser: Saenko, Yury V, Glushchenko, Eugenia S., Zolotovskii, Igor O., Sholokhov, Evgeny, Kurkov, Andrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photodynamic therapy is the main technique applied for surface carcinoma treatment. This technique employs singlet oxygen generated via a laser excited photosensitizer as a main damaging agent. However, prolonged sensitivity to intensive light, relatively low tissue penetration by activating light the cost of photosensitizer (PS) administration can limit photodynamic therapy applications. Early was reported singlet oxygen generation without photosensitizer induced by a laser irradiation at the wavelength of 1250–1270 nm. Here, we study the dynamics of oxidative stress, DNA damage, changes of mitochondrial potential, and mitochondrial mass induced by a laser at 1265 nm have been studied in HCT-116 and CHO-K cells. Laser irradiation of HCT-116 and CHO-K cells has induced a dose-dependent cell death via increasing intracellular reactive oxygen species (ROS) concentration, increase of DNA damage, decrease of mitochondrial potential, and reduced glutathione. It has been shown that, along with singlet oxygen generation, the increase of the intracellular ROS concentration induced by mitochondrial damage contributes to the damaging effect of the laser irradiation at 1265 nm.
ISSN:0268-8921
1435-604X
DOI:10.1007/s10103-015-1861-z