3-D flow of a compressible viscous micropolar fluid with spherical symmetry: a global existence theorem

We consider the nonstationary 3-D flow of a compressible viscous heat-conducting micropolar fluid in the domain to be the subset of R 3 bounded with two concentric spheres that present the solid thermo-insulated walls. In the thermodynamical sense the fluid is perfect and polytropic. We assume that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2015-06, Vol.2015 (1), p.1-21, Article 98
Hauptverfasser: Drazic, Ivan, Mujakovic, Nermina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the nonstationary 3-D flow of a compressible viscous heat-conducting micropolar fluid in the domain to be the subset of R 3 bounded with two concentric spheres that present the solid thermo-insulated walls. In the thermodynamical sense the fluid is perfect and polytropic. We assume that the initial density and temperature are bounded from below with a positive constant and that the initial data are sufficiently smooth spherically symmetric functions. The starting problem is transformed into the Lagrangian description on the spatial domain ] 0 , 1 [ . In this work we prove that our problem has a generalized solution for any time interval [ 0 , T ] , T ∈ R + . The proof is based on the local existence theorem and the extension principle.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-015-0357-x