Generalized Farkas’ lemma and gap-free duality for minimax DC optimization with polynomials and robust quadratic optimization

Motivated by robust (non-convex) quadratic optimization over convex quadratic constraints, in this paper, we examine minimax difference of convex (dc) optimization over convex polynomial inequalities. By way of generalizing the celebrated Farkas’ lemma to inequality systems involving the maximum of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2016-04, Vol.64 (4), p.679-702
Hauptverfasser: Jeyakumar, V., Lee, G. M., Linh, N. T. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by robust (non-convex) quadratic optimization over convex quadratic constraints, in this paper, we examine minimax difference of convex (dc) optimization over convex polynomial inequalities. By way of generalizing the celebrated Farkas’ lemma to inequality systems involving the maximum of dc functions and convex polynomials, we show that there is no duality gap between a minimax DC polynomial program and its associated conjugate dual problem. We then obtain strong duality under a constraint qualification. Consequently, we present characterizations of robust solutions of uncertain general non-convex quadratic optimization problems with convex quadratic constraints, including uncertain trust-region problems.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-015-0277-4