Self-learning kinetic Monte Carlo simulations of self-diffusion of small Ag islands on the Ag(111) surface

We studied self-diffusion of small two-dimensional Ag islands, containing up to ten atoms, on the Ag(111) surface using self-learning kinetic Monte Carlo (SLKMC) simulations. Activation barriers are calculated using the semi-empirical embedded atom method (EAM) potential. We find that two- to seven-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2016-01, Vol.28 (2), p.025001-025001
Hauptverfasser: Shah, Syed Islamuddin, Nandipati, Giridhar, Karim, Altaf, Rahman, Talat S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied self-diffusion of small two-dimensional Ag islands, containing up to ten atoms, on the Ag(111) surface using self-learning kinetic Monte Carlo (SLKMC) simulations. Activation barriers are calculated using the semi-empirical embedded atom method (EAM) potential. We find that two- to seven-atom islands primarily diffuse via concerted translation processes with small contributions from multi-atom and single-atom processes, while eight- to ten-atom islands diffuse via single-atom processes, especially edge diffusion, corner rounding and kink detachment, along with a minimal contribution from concerted processes. For each island size, we give a detailed description of the important processes, and their activation barriers, responsible for its diffusion.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/28/2/025001