Spatio-temporal characterization of pulses obtained from a high-energy sub-nanosecond laser system

Spatio-temporal profiles of laser pulses, obtained from each stage of a high-energy sub-nanosecond laser system, are investigated. The laser system is composed of a Q-switched Nd:YAG unstable oscillator, a chain of Nd:YAG amplifiers, a second-harmonic generator, and a high-energy pulse compressor ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2016-03, Vol.55 (7), p.1603-1612
Hauptverfasser: Feng, Chengyong, Xu, Xiaozhen, Diels, Jean-Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatio-temporal profiles of laser pulses, obtained from each stage of a high-energy sub-nanosecond laser system, are investigated. The laser system is composed of a Q-switched Nd:YAG unstable oscillator, a chain of Nd:YAG amplifiers, a second-harmonic generator, and a high-energy pulse compressor based on stimulated Brillouin scattering (SBS). A curved energy front, i.e., the pulses emerging away from the beam center being gradually delayed from the center pulse, is shown to originate from the unstable oscillator. Our comparative study shows that injection seeding will enlarge the energy front curvature, via reduction of the effective gain. After the laser amplifiers, the energy front curvature is more than doubled due to the gain saturation effect. The latter also modifies the spatial pulse width distribution. While there is a negligible pulse duration spread across the oscillator beam, the amplified pulses are found to have gradually reduced pulse duration away from the beam center. More interestingly, after the SBS pulse compression, not only the pulse width but also the delay is compressed down. This is, to the best of our knowledge, the first study of the spatio-temporal profile of the SBS compressed pulse. To compare with the experiments, two numerical models are developed to simulate the evolution of spatio-temporal profiles within the Nd:YAG laser system and during the SBS pulse compression, respectively. The first model is demonstrated to reproduce the experimental results very well, while the second model predicts part of the features of the SBS compressed pulse. The limitation on the latter is discussed.
ISSN:0003-6935
1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.55.001603