Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud’s aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2016-04, Vol.6 (4), p.467-473
Hauptverfasser: Piruthiviraj, Prakash, Margret, Anita, Krishnamurthy, Poornima Priyadharsani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud’s aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV–visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12–22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia ) and fungi ( Aspergillus flavus, Aspergillus niger and Candida albicans ) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.
ISSN:2190-5509
2190-5517
DOI:10.1007/s13204-015-0460-4