Stability of the (2+2)-fermionic system with zero-range interaction
We introduce a 3D model, and we study its stability, consisting of two distinct pairs of identical fermions coupled with a two-body interaction between fermions of different species, whose effective range is essentially zero (a so called (2+2)-fermionic system with zero-range interaction). The inter...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2016-03, Vol.49 (10), p.105301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a 3D model, and we study its stability, consisting of two distinct pairs of identical fermions coupled with a two-body interaction between fermions of different species, whose effective range is essentially zero (a so called (2+2)-fermionic system with zero-range interaction). The interaction is modelled by implementing the celebrated (and ubiquitous in the literature of this field) Bethe-Peierls contact condition with given two-body scattering length within the Krein-Višik-Birman theory of extensions of semi-bounded symmetric operators, in order to make the Hamiltonian a well-defined (self-adjoint) physical observable. After deriving the expression for the associated energy quadratic form, we show analytically and numerically that the energy of the model is bounded below, thus describing a stable system. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/49/10/105301 |