Automated segmentation of subretinal layers for the detection of macular edema

Macular edema (ME) is considered as one of the major indications of proliferative diabetic retinopathy and it is commonly caused due to diabetes. ME causes retinal swelling due to the accumulation of protein deposits within subretinal layers. Optical coherence tomography (OCT) imaging provides an ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2016-01, Vol.55 (3), p.454-461
Hauptverfasser: Hassan, Taimur, Akram, M Usman, Hassan, Bilal, Syed, Adeel M, Bazaz, Shafaat Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macular edema (ME) is considered as one of the major indications of proliferative diabetic retinopathy and it is commonly caused due to diabetes. ME causes retinal swelling due to the accumulation of protein deposits within subretinal layers. Optical coherence tomography (OCT) imaging provides an early detection of ME by showing the cross-sectional view of macular pathology. Many researchers have worked on automated identification of macular edema from fundus images, but this paper proposes a fully automated method for extracting and analyzing subretinal layers from OCT images using coherent tensors. These subretinal layers are then used to predict ME from candidate images using a support vector machine (SVM) classifier. A total of 71 OCT images of 64 patients are collected locally in which 15 persons have ME and 49 persons are healthy. Our proposed system has an overall accuracy of 97.78% in correctly classifying ME patients and healthy persons. We have also tested our proposed implementation on spectral domain OCT (SD-OCT) images of the Duke dataset consisting of 109 images from 10 patients and it correctly classified all healthy and ME images in the dataset.
ISSN:0003-6935
1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.55.000454