Stability theorem of depolarizing channels for the minimal output quantum Rényi entropies
The stability theorem of the depolarizing channel states that if a state is close to achieving the minimal/maximal output value of a certain quantity through the channel, then it must be close to an input state giving the minimal/maximal value. We show that the stability theorem of the depolarizing...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2016-03, Vol.49 (11), p.115304 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 115304 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 49 |
creator | Bae, Eunok Gour, Gilad Lee, Soojoon Park, Jeonghoon Sanders, Barry C |
description | The stability theorem of the depolarizing channel states that if a state is close to achieving the minimal/maximal output value of a certain quantity through the channel, then it must be close to an input state giving the minimal/maximal value. We show that the stability theorem of the depolarizing channel holds for the output quantum p-Rényi entropy for or p = 1, which is an extension of the known case p = 2. As an application, we present a protocol in which Bob determines whether Alice prepares a pure quantum state close to a product state. In the protocol, Alice transmits to Bob multiple copies of a pure state through a depolarizing channel, and Bob estimates its output quantum p-Rényi entropy. By using our stability theorem, we show that Bob can determine whether her preparation is appropriate. |
doi_str_mv | 10.1088/1751-8113/49/11/115304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800495513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800495513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-d26a9c7d0a7d0c6eb3f912af5b424824b4e462ccf0b2dd6171b68a1f5c3a64543</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhoMouK6-guTSm7qZND1dyuIJFgQPN96ENE3cLG3STdKL9Y18Dl_Mloq3wgwzMP8_8H8IXQK5BlKWKygySEqAdMWqFcBYWUrYEVr8Higc_-2QnqKzEHaEZIxUdIHeX6KoTWviAcetcl512GncqN61wptPYz-w3AprVRuwdn4S4c5Y04kWuyH2Q8T7Qdg4dPj5-8seDFY2etcbFc7RiRZtUBe_c4ne7m5f1w_J5un-cX2zSSQtypg0NBeVLBoixpa5qlNdARU6qxllJWU1UyynUmpS06bJoYA6LwXoTKYiZxlLl-hq_tt7tx9UiLwzQaq2FVa5IXAoCWFVlkE6SvNZKr0LwSvNez9G8QcOhE8w-cSJT5w4qzgAn2GORjobjev5zg3ejon-M_0AKQN4gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800495513</pqid></control><display><type>article</type><title>Stability theorem of depolarizing channels for the minimal output quantum Rényi entropies</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Bae, Eunok ; Gour, Gilad ; Lee, Soojoon ; Park, Jeonghoon ; Sanders, Barry C</creator><creatorcontrib>Bae, Eunok ; Gour, Gilad ; Lee, Soojoon ; Park, Jeonghoon ; Sanders, Barry C</creatorcontrib><description>The stability theorem of the depolarizing channel states that if a state is close to achieving the minimal/maximal output value of a certain quantity through the channel, then it must be close to an input state giving the minimal/maximal value. We show that the stability theorem of the depolarizing channel holds for the output quantum p-Rényi entropy for or p = 1, which is an extension of the known case p = 2. As an application, we present a protocol in which Bob determines whether Alice prepares a pure quantum state close to a product state. In the protocol, Alice transmits to Bob multiple copies of a pure state through a depolarizing channel, and Bob estimates its output quantum p-Rényi entropy. By using our stability theorem, we show that Bob can determine whether her preparation is appropriate.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/49/11/115304</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Channels ; Depolarization ; depolarizing channel ; Entropy ; Entropy (Information) ; Estimates ; Mathematical analysis ; quantum Rényi entropy ; Stability ; stability theorem ; Theorems</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2016-03, Vol.49 (11), p.115304</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-d26a9c7d0a7d0c6eb3f912af5b424824b4e462ccf0b2dd6171b68a1f5c3a64543</cites><orcidid>0000-0002-8326-8912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8113/49/11/115304/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Bae, Eunok</creatorcontrib><creatorcontrib>Gour, Gilad</creatorcontrib><creatorcontrib>Lee, Soojoon</creatorcontrib><creatorcontrib>Park, Jeonghoon</creatorcontrib><creatorcontrib>Sanders, Barry C</creatorcontrib><title>Stability theorem of depolarizing channels for the minimal output quantum Rényi entropies</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The stability theorem of the depolarizing channel states that if a state is close to achieving the minimal/maximal output value of a certain quantity through the channel, then it must be close to an input state giving the minimal/maximal value. We show that the stability theorem of the depolarizing channel holds for the output quantum p-Rényi entropy for or p = 1, which is an extension of the known case p = 2. As an application, we present a protocol in which Bob determines whether Alice prepares a pure quantum state close to a product state. In the protocol, Alice transmits to Bob multiple copies of a pure state through a depolarizing channel, and Bob estimates its output quantum p-Rényi entropy. By using our stability theorem, we show that Bob can determine whether her preparation is appropriate.</description><subject>Channels</subject><subject>Depolarization</subject><subject>depolarizing channel</subject><subject>Entropy</subject><subject>Entropy (Information)</subject><subject>Estimates</subject><subject>Mathematical analysis</subject><subject>quantum Rényi entropy</subject><subject>Stability</subject><subject>stability theorem</subject><subject>Theorems</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKxDAQhoMouK6-guTSm7qZND1dyuIJFgQPN96ENE3cLG3STdKL9Y18Dl_Mloq3wgwzMP8_8H8IXQK5BlKWKygySEqAdMWqFcBYWUrYEVr8Higc_-2QnqKzEHaEZIxUdIHeX6KoTWviAcetcl512GncqN61wptPYz-w3AprVRuwdn4S4c5Y04kWuyH2Q8T7Qdg4dPj5-8seDFY2etcbFc7RiRZtUBe_c4ne7m5f1w_J5un-cX2zSSQtypg0NBeVLBoixpa5qlNdARU6qxllJWU1UyynUmpS06bJoYA6LwXoTKYiZxlLl-hq_tt7tx9UiLwzQaq2FVa5IXAoCWFVlkE6SvNZKr0LwSvNez9G8QcOhE8w-cSJT5w4qzgAn2GORjobjev5zg3ejon-M_0AKQN4gQ</recordid><startdate>20160318</startdate><enddate>20160318</enddate><creator>Bae, Eunok</creator><creator>Gour, Gilad</creator><creator>Lee, Soojoon</creator><creator>Park, Jeonghoon</creator><creator>Sanders, Barry C</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8326-8912</orcidid></search><sort><creationdate>20160318</creationdate><title>Stability theorem of depolarizing channels for the minimal output quantum Rényi entropies</title><author>Bae, Eunok ; Gour, Gilad ; Lee, Soojoon ; Park, Jeonghoon ; Sanders, Barry C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-d26a9c7d0a7d0c6eb3f912af5b424824b4e462ccf0b2dd6171b68a1f5c3a64543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Channels</topic><topic>Depolarization</topic><topic>depolarizing channel</topic><topic>Entropy</topic><topic>Entropy (Information)</topic><topic>Estimates</topic><topic>Mathematical analysis</topic><topic>quantum Rényi entropy</topic><topic>Stability</topic><topic>stability theorem</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Eunok</creatorcontrib><creatorcontrib>Gour, Gilad</creatorcontrib><creatorcontrib>Lee, Soojoon</creatorcontrib><creatorcontrib>Park, Jeonghoon</creatorcontrib><creatorcontrib>Sanders, Barry C</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Eunok</au><au>Gour, Gilad</au><au>Lee, Soojoon</au><au>Park, Jeonghoon</au><au>Sanders, Barry C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability theorem of depolarizing channels for the minimal output quantum Rényi entropies</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2016-03-18</date><risdate>2016</risdate><volume>49</volume><issue>11</issue><spage>115304</spage><pages>115304-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The stability theorem of the depolarizing channel states that if a state is close to achieving the minimal/maximal output value of a certain quantity through the channel, then it must be close to an input state giving the minimal/maximal value. We show that the stability theorem of the depolarizing channel holds for the output quantum p-Rényi entropy for or p = 1, which is an extension of the known case p = 2. As an application, we present a protocol in which Bob determines whether Alice prepares a pure quantum state close to a product state. In the protocol, Alice transmits to Bob multiple copies of a pure state through a depolarizing channel, and Bob estimates its output quantum p-Rényi entropy. By using our stability theorem, we show that Bob can determine whether her preparation is appropriate.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8113/49/11/115304</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8326-8912</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2016-03, Vol.49 (11), p.115304 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800495513 |
source | HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals |
subjects | Channels Depolarization depolarizing channel Entropy Entropy (Information) Estimates Mathematical analysis quantum Rényi entropy Stability stability theorem Theorems |
title | Stability theorem of depolarizing channels for the minimal output quantum Rényi entropies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20theorem%20of%20depolarizing%20channels%20for%20the%20minimal%20output%20quantum%20R%C3%A9nyi%20entropies&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Bae,%20Eunok&rft.date=2016-03-18&rft.volume=49&rft.issue=11&rft.spage=115304&rft.pages=115304-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8113/49/11/115304&rft_dat=%3Cproquest_iop_j%3E1800495513%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800495513&rft_id=info:pmid/&rfr_iscdi=true |