Stability theorem of depolarizing channels for the minimal output quantum Rényi entropies
The stability theorem of the depolarizing channel states that if a state is close to achieving the minimal/maximal output value of a certain quantity through the channel, then it must be close to an input state giving the minimal/maximal value. We show that the stability theorem of the depolarizing...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2016-03, Vol.49 (11), p.115304 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The stability theorem of the depolarizing channel states that if a state is close to achieving the minimal/maximal output value of a certain quantity through the channel, then it must be close to an input state giving the minimal/maximal value. We show that the stability theorem of the depolarizing channel holds for the output quantum p-Rényi entropy for or p = 1, which is an extension of the known case p = 2. As an application, we present a protocol in which Bob determines whether Alice prepares a pure quantum state close to a product state. In the protocol, Alice transmits to Bob multiple copies of a pure state through a depolarizing channel, and Bob estimates its output quantum p-Rényi entropy. By using our stability theorem, we show that Bob can determine whether her preparation is appropriate. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/49/11/115304 |