Universality of random graphs and rainbow embedding
In this paper we show how to use simple partitioning lemmas in order to embed spanning graphs in a typical member of G(n,p). Let the maximum density of a graph H be the maximum average degree of all the subgraphs of H. First, we show that for p=ω(Δ12n−1/2dlog3n), a graph G∼G(n,p) w.h.p. contains cop...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2016-05, Vol.48 (3), p.546-564 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we show how to use simple partitioning lemmas in order to embed spanning graphs in a typical member of G(n,p). Let the maximum density of a graph H be the maximum average degree of all the subgraphs of H. First, we show that for p=ω(Δ12n−1/2dlog3n), a graph G∼G(n,p) w.h.p. contains copies of all spanning graphs H with maximum degree at most Δ and maximum density at most d. For d |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.20596 |