Universality of random graphs and rainbow embedding

In this paper we show how to use simple partitioning lemmas in order to embed spanning graphs in a typical member of G(n,p). Let the maximum density of a graph H be the maximum average degree of all the subgraphs of H. First, we show that for p=ω(Δ12n−1/2dlog3n), a graph G∼G(n,p) w.h.p. contains cop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2016-05, Vol.48 (3), p.546-564
Hauptverfasser: Ferber, Asaf, Nenadov, Rajko, Peter, Ueli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we show how to use simple partitioning lemmas in order to embed spanning graphs in a typical member of G(n,p). Let the maximum density of a graph H be the maximum average degree of all the subgraphs of H. First, we show that for p=ω(Δ12n−1/2dlog3n), a graph G∼G(n,p) w.h.p. contains copies of all spanning graphs H with maximum degree at most Δ and maximum density at most d. For d
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20596