Ultrafast study of phonon transport in isotopically controlled semiconductor nanostructures

Isotopically modulated silicon and germanium multilayers are analyzed by means of femtosecond spectroscopy and pulsed X‐ray scattering for determining thermal conductivity and phonon modes. Isotopic modulation decreases thermal conductivity stronger than expected from a band bending model in the coh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2016-03, Vol.213 (3), p.541-548
Hauptverfasser: Issenmann, Daniel, Eon, Soizic, Bracht, Hartmut, Hettich, Mike, Dekorsy, Thomas, Buth, Gernot, Steininger, Ralph, Baumbach, Tilo, Lundsgaard Hansen, John, Nylandsted Larsen, Arne, Ager III, Joel W., Haller, Eugene E., Plech, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isotopically modulated silicon and germanium multilayers are analyzed by means of femtosecond spectroscopy and pulsed X‐ray scattering for determining thermal conductivity and phonon modes. Isotopic modulation decreases thermal conductivity stronger than expected from a band bending model in the coherent phonon transport regime, in particular for silicon. Femtosecond spectroscopy and X‐ray scattering resolve zone‐folded vibration modes, which are located at the edge of the new, smaller Brillouin zone due to the multilayer periodicity. These modes can contribute to the reduction of thermal conductivity by Umklapp processes within the zone‐folded mini‐bands. Color‐coded increase in ultrafast X‐ray scattering in vicinity to the mini‐zone boundary of a germanium multilayer.
ISSN:1862-6300
1862-6319
DOI:10.1002/pssa.201532462