Control of citrus molds using bioactive coatings incorporated with fungal chitosan/plant extracts composite
BACKGROUND: The ongoing postharvest loss in citrus fruits, due to fungal infection, is a chronic economic and agricultural problem. Most of citrus damage is caused by Penicillium spp., e.g. green mold (P. digitatum) and blue mold (P. italicum). Fungal chitosan, from Mucor rouxii, and plant extracts...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2016-03, Vol.96 (4), p.1306-1312 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND: The ongoing postharvest loss in citrus fruits, due to fungal infection, is a chronic economic and agricultural problem. Most of citrus damage is caused by Penicillium spp., e.g. green mold (P. digitatum) and blue mold (P. italicum). Fungal chitosan, from Mucor rouxii, and plant extracts from cress seeds, olive leaves, pomegranate peels and senna pods, were evaluated as antifungal agents against the phytopathogenic fungi, P. digitatum and P. italicum, using in vitro qualitative and quantitative assays. RESULTS: All natural agents tested exhibited potent antifungal activity; the most powerful agent was cress (Lepidium sativum) seed extract, followed by pomegranate (Punica granatum) peel extract. Fungal chitosan also had a remarkable fungicidal potentiality using both evaluation assays. Penicillium digitatum was generally more resistant than P. italicum toward all examined agents. The incorporation of each individual natural agent in coating material resulted in a great reduction in fungal growth and viability. The addition of chitosan combined with cress and pomegranate extracts, to the coating materials, prevented coated citrus fruit from decay by green and blue mold for a 2‐week storage period. CONCLUSION: Natural derivatives could be recommended as powerful antifungal alternatives to protect citrus fruits from postharvest fungal decay. © 2015 Society of Chemical Industry |
---|---|
ISSN: | 0022-5142 1097-0010 |
DOI: | 10.1002/jsfa.7223 |