On Variational and PDE-Based Distance Function Approximations

In this paper, we deal with the problem of computing the distance to a surface (a curve in two dimensional) and consider several distance function approximation methods which are based on solving partial differential equations (PDEs) and finding solutions to variational problems. In particular, we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2015-12, Vol.34 (8), p.104-118
Hauptverfasser: Belyaev, Alexander G., Fayolle, Pierre-Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we deal with the problem of computing the distance to a surface (a curve in two dimensional) and consider several distance function approximation methods which are based on solving partial differential equations (PDEs) and finding solutions to variational problems. In particular, we deal with distance function estimation methods related to the Poisson‐like equations and generalized double‐layer potentials. Our numerical experiments are backed by novel theoretical results and demonstrate efficiency of the considered PDE‐based distance function approximations. In this paper, we deal with the problem of computing the distance to a surface (a curve in two dimensional) and consider several distance function approximation methods which are based on solving partial differential equations (PDEs) and finding solutions to variational problems. In particular, we deal with distance function estimation methods related to the Poisson‐like equations and generalized double‐layer potentials. Our numerical experiments are backed by novel theoretical results and demonstrate efficiency of the considered PDE‐based distance function approximations.
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12611