New chaotic planar attractors from smooth zero entropy interval maps

We show that for every positive integer k there exists an interval map f : I → I such that (1) f is Li-Yorke chaotic, (2) the inverse limit space I f = lim ← { f , I } does not contain an indecomposable subcontinuum, (3) f is C k -smooth, and (4) f is not C k + 1 -smooth. We also show that there exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2015-07, Vol.2015 (1), p.1-11, Article 232
Hauptverfasser: Boroński, Jan P, Kupka, Jiří
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2015
creator Boroński, Jan P
Kupka, Jiří
description We show that for every positive integer k there exists an interval map f : I → I such that (1) f is Li-Yorke chaotic, (2) the inverse limit space I f = lim ← { f , I } does not contain an indecomposable subcontinuum, (3) f is C k -smooth, and (4) f is not C k + 1 -smooth. We also show that there exists a C ∞ -smooth f that satisfies (1) and (2). This answers a recent question of Oprocha and the first author from (Proc. Am. Math. Soc. 143(8):3659-3670, 2015), where the result was proved for k = 0 . Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each I f contains, for every integer i , a subcontinuum C i with the following two properties: (i) C i is 2 i -periodic under the shift homeomorphism, and (ii) C i is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P Oprocha and the first author.
doi_str_mv 10.1186/s13662-015-0565-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800485839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3755402181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-37615ae950ca7900f21454ee87dc878b84ec42cfa3e607ed060e3410c39c56b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gssbAYnhPbcUZUPqUKlu6W677QVEkcbBdUfj2pwlAhMb03nHt1dQi55HDDuVa3kedKZQy4ZCCVZOURmXClC8a1KI4P_lNyFuMGICuF1hNy_4pf1K2tT7WjfWM7G6hNKViXfIi0Cr6lsfU-rek3Bk-xS8H3O1p3CcOnbWhr-3hOTirbRLz4vVOyeHxYzJ7Z_O3pZXY3Z05InVheKC4tlhKcLUqAKuNCCkRdrJwu9FILdCJzlc1RQYErUIC54ODy0km1zKfkeqztg__YYkymraPDZliNfhsN1wBCS52XA3r1B934beiGcYarUsthiZIDxUfKBR9jwMr0oW5t2BkOZq_VjFrNoNXstZp9czZm4sB27xgOmv8N_QDKzXnv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698576165</pqid></control><display><type>article</type><title>New chaotic planar attractors from smooth zero entropy interval maps</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Boroński, Jan P ; Kupka, Jiří</creator><creatorcontrib>Boroński, Jan P ; Kupka, Jiří</creatorcontrib><description>We show that for every positive integer k there exists an interval map f : I → I such that (1) f is Li-Yorke chaotic, (2) the inverse limit space I f = lim ← { f , I } does not contain an indecomposable subcontinuum, (3) f is C k -smooth, and (4) f is not C k + 1 -smooth. We also show that there exists a C ∞ -smooth f that satisfies (1) and (2). This answers a recent question of Oprocha and the first author from (Proc. Am. Math. Soc. 143(8):3659-3670, 2015), where the result was proved for k = 0 . Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each I f contains, for every integer i , a subcontinuum C i with the following two properties: (i) C i is 2 i -periodic under the shift homeomorphism, and (ii) C i is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P Oprocha and the first author.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-015-0565-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Chaos theory ; Construction ; Difference and Functional Equations ; Entropy ; Functional Analysis ; Integers ; Intervals ; Inverse ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Spectra</subject><ispartof>Advances in difference equations, 2015-07, Vol.2015 (1), p.1-11, Article 232</ispartof><rights>Boroński and Kupka 2015</rights><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-37615ae950ca7900f21454ee87dc878b84ec42cfa3e607ed060e3410c39c56b3</citedby><cites>FETCH-LOGICAL-c458t-37615ae950ca7900f21454ee87dc878b84ec42cfa3e607ed060e3410c39c56b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Boroński, Jan P</creatorcontrib><creatorcontrib>Kupka, Jiří</creatorcontrib><title>New chaotic planar attractors from smooth zero entropy interval maps</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>We show that for every positive integer k there exists an interval map f : I → I such that (1) f is Li-Yorke chaotic, (2) the inverse limit space I f = lim ← { f , I } does not contain an indecomposable subcontinuum, (3) f is C k -smooth, and (4) f is not C k + 1 -smooth. We also show that there exists a C ∞ -smooth f that satisfies (1) and (2). This answers a recent question of Oprocha and the first author from (Proc. Am. Math. Soc. 143(8):3659-3670, 2015), where the result was proved for k = 0 . Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each I f contains, for every integer i , a subcontinuum C i with the following two properties: (i) C i is 2 i -periodic under the shift homeomorphism, and (ii) C i is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P Oprocha and the first author.</description><subject>Analysis</subject><subject>Chaos theory</subject><subject>Construction</subject><subject>Difference and Functional Equations</subject><subject>Entropy</subject><subject>Functional Analysis</subject><subject>Integers</subject><subject>Intervals</subject><subject>Inverse</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Spectra</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAURS0EEqXwA9gssbAYnhPbcUZUPqUKlu6W677QVEkcbBdUfj2pwlAhMb03nHt1dQi55HDDuVa3kedKZQy4ZCCVZOURmXClC8a1KI4P_lNyFuMGICuF1hNy_4pf1K2tT7WjfWM7G6hNKViXfIi0Cr6lsfU-rek3Bk-xS8H3O1p3CcOnbWhr-3hOTirbRLz4vVOyeHxYzJ7Z_O3pZXY3Z05InVheKC4tlhKcLUqAKuNCCkRdrJwu9FILdCJzlc1RQYErUIC54ODy0km1zKfkeqztg__YYkymraPDZliNfhsN1wBCS52XA3r1B934beiGcYarUsthiZIDxUfKBR9jwMr0oW5t2BkOZq_VjFrNoNXstZp9czZm4sB27xgOmv8N_QDKzXnv</recordid><startdate>20150726</startdate><enddate>20150726</enddate><creator>Boroński, Jan P</creator><creator>Kupka, Jiří</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150726</creationdate><title>New chaotic planar attractors from smooth zero entropy interval maps</title><author>Boroński, Jan P ; Kupka, Jiří</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-37615ae950ca7900f21454ee87dc878b84ec42cfa3e607ed060e3410c39c56b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Chaos theory</topic><topic>Construction</topic><topic>Difference and Functional Equations</topic><topic>Entropy</topic><topic>Functional Analysis</topic><topic>Integers</topic><topic>Intervals</topic><topic>Inverse</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boroński, Jan P</creatorcontrib><creatorcontrib>Kupka, Jiří</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boroński, Jan P</au><au>Kupka, Jiří</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New chaotic planar attractors from smooth zero entropy interval maps</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2015-07-26</date><risdate>2015</risdate><volume>2015</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>232</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>We show that for every positive integer k there exists an interval map f : I → I such that (1) f is Li-Yorke chaotic, (2) the inverse limit space I f = lim ← { f , I } does not contain an indecomposable subcontinuum, (3) f is C k -smooth, and (4) f is not C k + 1 -smooth. We also show that there exists a C ∞ -smooth f that satisfies (1) and (2). This answers a recent question of Oprocha and the first author from (Proc. Am. Math. Soc. 143(8):3659-3670, 2015), where the result was proved for k = 0 . Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each I f contains, for every integer i , a subcontinuum C i with the following two properties: (i) C i is 2 i -periodic under the shift homeomorphism, and (ii) C i is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P Oprocha and the first author.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-015-0565-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2015-07, Vol.2015 (1), p.1-11, Article 232
issn 1687-1847
1687-1839
1687-1847
language eng
recordid cdi_proquest_miscellaneous_1800485839
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analysis
Chaos theory
Construction
Difference and Functional Equations
Entropy
Functional Analysis
Integers
Intervals
Inverse
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Spectra
title New chaotic planar attractors from smooth zero entropy interval maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20chaotic%20planar%20attractors%20from%20smooth%20zero%20entropy%20interval%20maps&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Boro%C5%84ski,%20Jan%20P&rft.date=2015-07-26&rft.volume=2015&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=232&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-015-0565-9&rft_dat=%3Cproquest_cross%3E3755402181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698576165&rft_id=info:pmid/&rfr_iscdi=true