New chaotic planar attractors from smooth zero entropy interval maps
We show that for every positive integer k there exists an interval map f : I → I such that (1) f is Li-Yorke chaotic, (2) the inverse limit space I f = lim ← { f , I } does not contain an indecomposable subcontinuum, (3) f is C k -smooth, and (4) f is not C k + 1 -smooth. We also show that there exi...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2015-07, Vol.2015 (1), p.1-11, Article 232 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Advances in difference equations |
container_volume | 2015 |
creator | Boroński, Jan P Kupka, Jiří |
description | We show that for every positive integer
k
there exists an interval map
f
:
I
→
I
such that (1)
f
is Li-Yorke chaotic, (2) the inverse limit space
I
f
=
lim
←
{
f
,
I
}
does not contain an indecomposable subcontinuum, (3)
f
is
C
k
-smooth, and (4)
f
is not
C
k
+
1
-smooth. We also show that there exists a
C
∞
-smooth
f
that satisfies (1) and (2). This answers a recent question of Oprocha and the first author from (Proc. Am. Math. Soc. 143(8):3659-3670, 2015), where the result was proved for
k
=
0
. Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each
I
f
contains, for every integer
i
, a subcontinuum
C
i
with the following two properties: (i)
C
i
is
2
i
-periodic under the shift homeomorphism, and (ii)
C
i
is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P Oprocha and the first author. |
doi_str_mv | 10.1186/s13662-015-0565-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800485839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3755402181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-37615ae950ca7900f21454ee87dc878b84ec42cfa3e607ed060e3410c39c56b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gssbAYnhPbcUZUPqUKlu6W677QVEkcbBdUfj2pwlAhMb03nHt1dQi55HDDuVa3kedKZQy4ZCCVZOURmXClC8a1KI4P_lNyFuMGICuF1hNy_4pf1K2tT7WjfWM7G6hNKViXfIi0Cr6lsfU-rek3Bk-xS8H3O1p3CcOnbWhr-3hOTirbRLz4vVOyeHxYzJ7Z_O3pZXY3Z05InVheKC4tlhKcLUqAKuNCCkRdrJwu9FILdCJzlc1RQYErUIC54ODy0km1zKfkeqztg__YYkymraPDZliNfhsN1wBCS52XA3r1B934beiGcYarUsthiZIDxUfKBR9jwMr0oW5t2BkOZq_VjFrNoNXstZp9czZm4sB27xgOmv8N_QDKzXnv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698576165</pqid></control><display><type>article</type><title>New chaotic planar attractors from smooth zero entropy interval maps</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Boroński, Jan P ; Kupka, Jiří</creator><creatorcontrib>Boroński, Jan P ; Kupka, Jiří</creatorcontrib><description>We show that for every positive integer
k
there exists an interval map
f
:
I
→
I
such that (1)
f
is Li-Yorke chaotic, (2) the inverse limit space
I
f
=
lim
←
{
f
,
I
}
does not contain an indecomposable subcontinuum, (3)
f
is
C
k
-smooth, and (4)
f
is not
C
k
+
1
-smooth. We also show that there exists a
C
∞
-smooth
f
that satisfies (1) and (2). This answers a recent question of Oprocha and the first author from (Proc. Am. Math. Soc. 143(8):3659-3670, 2015), where the result was proved for
k
=
0
. Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each
I
f
contains, for every integer
i
, a subcontinuum
C
i
with the following two properties: (i)
C
i
is
2
i
-periodic under the shift homeomorphism, and (ii)
C
i
is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P Oprocha and the first author.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-015-0565-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Chaos theory ; Construction ; Difference and Functional Equations ; Entropy ; Functional Analysis ; Integers ; Intervals ; Inverse ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Spectra</subject><ispartof>Advances in difference equations, 2015-07, Vol.2015 (1), p.1-11, Article 232</ispartof><rights>Boroński and Kupka 2015</rights><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-37615ae950ca7900f21454ee87dc878b84ec42cfa3e607ed060e3410c39c56b3</citedby><cites>FETCH-LOGICAL-c458t-37615ae950ca7900f21454ee87dc878b84ec42cfa3e607ed060e3410c39c56b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Boroński, Jan P</creatorcontrib><creatorcontrib>Kupka, Jiří</creatorcontrib><title>New chaotic planar attractors from smooth zero entropy interval maps</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>We show that for every positive integer
k
there exists an interval map
f
:
I
→
I
such that (1)
f
is Li-Yorke chaotic, (2) the inverse limit space
I
f
=
lim
←
{
f
,
I
}
does not contain an indecomposable subcontinuum, (3)
f
is
C
k
-smooth, and (4)
f
is not
C
k
+
1
-smooth. We also show that there exists a
C
∞
-smooth
f
that satisfies (1) and (2). This answers a recent question of Oprocha and the first author from (Proc. Am. Math. Soc. 143(8):3659-3670, 2015), where the result was proved for
k
=
0
. Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each
I
f
contains, for every integer
i
, a subcontinuum
C
i
with the following two properties: (i)
C
i
is
2
i
-periodic under the shift homeomorphism, and (ii)
C
i
is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P Oprocha and the first author.</description><subject>Analysis</subject><subject>Chaos theory</subject><subject>Construction</subject><subject>Difference and Functional Equations</subject><subject>Entropy</subject><subject>Functional Analysis</subject><subject>Integers</subject><subject>Intervals</subject><subject>Inverse</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Spectra</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAURS0EEqXwA9gssbAYnhPbcUZUPqUKlu6W677QVEkcbBdUfj2pwlAhMb03nHt1dQi55HDDuVa3kedKZQy4ZCCVZOURmXClC8a1KI4P_lNyFuMGICuF1hNy_4pf1K2tT7WjfWM7G6hNKViXfIi0Cr6lsfU-rek3Bk-xS8H3O1p3CcOnbWhr-3hOTirbRLz4vVOyeHxYzJ7Z_O3pZXY3Z05InVheKC4tlhKcLUqAKuNCCkRdrJwu9FILdCJzlc1RQYErUIC54ODy0km1zKfkeqztg__YYkymraPDZliNfhsN1wBCS52XA3r1B934beiGcYarUsthiZIDxUfKBR9jwMr0oW5t2BkOZq_VjFrNoNXstZp9czZm4sB27xgOmv8N_QDKzXnv</recordid><startdate>20150726</startdate><enddate>20150726</enddate><creator>Boroński, Jan P</creator><creator>Kupka, Jiří</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150726</creationdate><title>New chaotic planar attractors from smooth zero entropy interval maps</title><author>Boroński, Jan P ; Kupka, Jiří</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-37615ae950ca7900f21454ee87dc878b84ec42cfa3e607ed060e3410c39c56b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Chaos theory</topic><topic>Construction</topic><topic>Difference and Functional Equations</topic><topic>Entropy</topic><topic>Functional Analysis</topic><topic>Integers</topic><topic>Intervals</topic><topic>Inverse</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boroński, Jan P</creatorcontrib><creatorcontrib>Kupka, Jiří</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boroński, Jan P</au><au>Kupka, Jiří</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New chaotic planar attractors from smooth zero entropy interval maps</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2015-07-26</date><risdate>2015</risdate><volume>2015</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>232</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>We show that for every positive integer
k
there exists an interval map
f
:
I
→
I
such that (1)
f
is Li-Yorke chaotic, (2) the inverse limit space
I
f
=
lim
←
{
f
,
I
}
does not contain an indecomposable subcontinuum, (3)
f
is
C
k
-smooth, and (4)
f
is not
C
k
+
1
-smooth. We also show that there exists a
C
∞
-smooth
f
that satisfies (1) and (2). This answers a recent question of Oprocha and the first author from (Proc. Am. Math. Soc. 143(8):3659-3670, 2015), where the result was proved for
k
=
0
. Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each
I
f
contains, for every integer
i
, a subcontinuum
C
i
with the following two properties: (i)
C
i
is
2
i
-periodic under the shift homeomorphism, and (ii)
C
i
is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P Oprocha and the first author.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-015-0565-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1847 |
ispartof | Advances in difference equations, 2015-07, Vol.2015 (1), p.1-11, Article 232 |
issn | 1687-1847 1687-1839 1687-1847 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800485839 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Chaos theory Construction Difference and Functional Equations Entropy Functional Analysis Integers Intervals Inverse Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Spectra |
title | New chaotic planar attractors from smooth zero entropy interval maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20chaotic%20planar%20attractors%20from%20smooth%20zero%20entropy%20interval%20maps&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Boro%C5%84ski,%20Jan%20P&rft.date=2015-07-26&rft.volume=2015&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=232&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-015-0565-9&rft_dat=%3Cproquest_cross%3E3755402181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698576165&rft_id=info:pmid/&rfr_iscdi=true |