New chaotic planar attractors from smooth zero entropy interval maps

We show that for every positive integer k there exists an interval map f : I → I such that (1) f is Li-Yorke chaotic, (2) the inverse limit space I f = lim ← { f , I } does not contain an indecomposable subcontinuum, (3) f is C k -smooth, and (4) f is not C k + 1 -smooth. We also show that there exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2015-07, Vol.2015 (1), p.1-11, Article 232
Hauptverfasser: Boroński, Jan P, Kupka, Jiří
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that for every positive integer k there exists an interval map f : I → I such that (1) f is Li-Yorke chaotic, (2) the inverse limit space I f = lim ← { f , I } does not contain an indecomposable subcontinuum, (3) f is C k -smooth, and (4) f is not C k + 1 -smooth. We also show that there exists a C ∞ -smooth f that satisfies (1) and (2). This answers a recent question of Oprocha and the first author from (Proc. Am. Math. Soc. 143(8):3659-3670, 2015), where the result was proved for k = 0 . Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each I f contains, for every integer i , a subcontinuum C i with the following two properties: (i) C i is 2 i -periodic under the shift homeomorphism, and (ii) C i is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P Oprocha and the first author.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-015-0565-9