Ultrasonic Spot Welding of a Rare-Earth Containing ZEK100 Magnesium Alloy: Effect of Welding Energy

Ultrasonic spot welding was used to join a low rare-earth containing ZEK100 Mg alloy at different levels of welding energy, and tensile lap shear tests were conducted to evaluate the failure strength in relation to the microstructural changes. It was observed that dynamic recrystallization occurred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2016-04, Vol.47 (4), p.1686-1697
Hauptverfasser: Macwan, A., Chen, D. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrasonic spot welding was used to join a low rare-earth containing ZEK100 Mg alloy at different levels of welding energy, and tensile lap shear tests were conducted to evaluate the failure strength in relation to the microstructural changes. It was observed that dynamic recrystallization occurred in the nugget zone; the grain size increased and microhardness decreased with increasing welding energy arising from the increasing interface temperature and strain rate. The weld interface experienced severe plastic deformation at a high strain rate from ~500 to ~2100 s −1 with increasing welding energy from 500 to 2000 J. A relationship between grain size and Zener–Hollomon parameter, and a Hall–Petch-type relationship between microhardness and grain size were established. The tensile lap shear strength and failure energy were observed to first increase with increasing welding energy, reach the maximum values at 1500 J, and then decrease with a further increase in the welding energy. The samples welded at a welding energy ≤1500 J exhibited an interfacial failure mode, while nugget pull-out occurred in the samples welded at a welding energy above 1500 J. The fracture surfaces showed typical shear failure. Low-temperature tests at 233 K (−40 °C) showed no significant effect on the strength and failure mode of joints welded at the optimal welding energy of 1500 J. Elevated temperature tests at 453 K (180 °C) revealed a lower failure load but a higher failure energy due to the increased deformability, and showed a mixed mode of partial interfacial failure and partial nugget pull-out.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-016-3355-4