A general viscous-spring transmitting boundary for dynamic analysis of saturated poroelastic media

Summary A time‐domain viscous‐spring transmitting boundary is presented for transient dynamic analysis of saturated poroelastic media with linear elastic and isotropic properties. The u–U formulation of Biot equation in cylindrical coordinate is adopted in the derivation. By this general viscous‐spr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2016-02, Vol.40 (3), p.344-366
Hauptverfasser: Li, Peng, Song, Er-xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary A time‐domain viscous‐spring transmitting boundary is presented for transient dynamic analysis of saturated poroelastic media with linear elastic and isotropic properties. The u–U formulation of Biot equation in cylindrical coordinate is adopted in the derivation. By this general viscous‐spring boundary, the effective stress and pore fluid pressure on the truncated boundary of the computational area are replaced by a set of continuously distributed spring and dashpot elements, of which the parameters are defined assuming an infinite permeability and considering the two dilatational waves. Numerical examples demonstrate good absorption of both the two cylindrical dilatational waves by the proposed ‘drained’ boundary. For general two‐dimensional wave propagation problems, acceptable accuracy can still be achieved by setting the proposed boundary relatively far away from the scatter. Numerical comparison shows that the results obtained by using this boundary are more accurate for all permeability values than those by the traditional viscous‐spring or viscous boundaries established for u–U formulation. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:0363-9061
1096-9853
DOI:10.1002/nag.2403