A 1.5-D anisotropic sigma-coordinate thermal stress model of landlocked sea ice in the Canadian Arctic Archipelago

We present a 1.5‐D thermal stress model that takes into account the effect of land confinement, which causes anisotropy in thermal stresses. To this end, we fix the total strain in the direction perpendicular to the coastline to its value at landlocked ice onset. This prevents thermal expansion in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2015-12, Vol.120 (12), p.8251-8269
Hauptverfasser: Hata, Y., Tremblay, L. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a 1.5‐D thermal stress model that takes into account the effect of land confinement, which causes anisotropy in thermal stresses. To this end, we fix the total strain in the direction perpendicular to the coastline to its value at landlocked ice onset. This prevents thermal expansion in the direction perpendicular to the coastline and therefore induces larger thermal stresses in this direction. The simulated stresses best match the observations, when a Young's Modulus of 0.5 GPa and a relaxation time constant of 8 days are used. This simulation gives root‐mean‐square errors of 13.0 and 13.1 kPa (∼15%) in the major and minor principal stresses, respectively. The simulated anisotropic component of thermal stress also generally agrees with observations. The optimal Young's Modulus is in the low range of reported values in the literature, and the optimal relaxation time constant (8 days) is larger than the largest relaxation time constant reported in the literature (5 days). A series of experiments are done to examine the model sensitivity to vertical resolution, snow cover, and the parameterizations of Young's Modulus and viscous creep. Results show that a minimum of one and three layers in the snow and ice, respectively, is required to simulate the thermal stresses within 15% error of the value assessed with the higher‐resolution control simulation. This highlights the importance of resolving the internal snow and ice vertical temperature profile in order to properly model the thermal stresses of sea ice. Key Points: We present a 1.5‐D thermal stress model that includes the effect of land confinement The simulated seasonal and synoptic stress fluctuations are in good agreement with observations The results suggest that mechanical stress transmission is important for diurnal fluctuations
ISSN:2169-9275
2169-9291
DOI:10.1002/2015JC010820