Synthesis of PEGylated chitosan copolymers as efficiently antimicrobial coatings for leather

ABSTRACT In this work, poly(ethylene glcycol)‐grafted chitosan (PEG‐g‐CS) was synthesized by conjugating PEG to the chitosan (CS) backbone. Such PEGylated CS copolymer was further characterized by FTIR and 1H NMR, and the results demonstrated the successful synthesis. After PEGylation, the water sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2016-06, Vol.133 (22), p.np-n/a
Hauptverfasser: Luo, Quanqing, Gao, Haiqi, Peng, Lihua, Liu, Gongyan, Zhang, Zongcai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT In this work, poly(ethylene glcycol)‐grafted chitosan (PEG‐g‐CS) was synthesized by conjugating PEG to the chitosan (CS) backbone. Such PEGylated CS copolymer was further characterized by FTIR and 1H NMR, and the results demonstrated the successful synthesis. After PEGylation, the water solubility of CS was significantly improved due to the hydrophilicity of the PEG polymer. Therefore, this PEGylated CS was prepared as water borne coating for leather surface. The morphology and hydrophilicity of this coating on leather was studied by SEM and water contact angle measurement. Furthermore, the antimicrobial activity of PEGylated CS coating was investigated by measuring its minimum inhibitory concentration and the inhibition zone of coated leather against Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus, respectively. Compared to CS coating, such PEG‐g‐CS coating exhibited better antimicrobial property, which indicated the synergetic effect of the antimicrobial property of CS and the antiadhesive property of PEG. Thus, this PEGylated CS copolymer can be used as efficiently antimicrobial coating for leather product. © 2016 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43465.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.43465