High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding
Light‐weight and high‐performance electromagnetic interference (EMI)‐shielding epoxy nanocomposites are prepared by an infiltration method using a 3D carbon nanotube (CNT) sponge as the 3D reinforcement and conducting framework. The preformed, highly porous, and electrically conducting framework act...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2016-01, Vol.26 (3), p.447-455 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Light‐weight and high‐performance electromagnetic interference (EMI)‐shielding epoxy nanocomposites are prepared by an infiltration method using a 3D carbon nanotube (CNT) sponge as the 3D reinforcement and conducting framework. The preformed, highly porous, and electrically conducting framework acts as a highway for electron transport and can resist a high external loading to protect the epoxy nanocomposite. Consequently, a remarkable conductivity of 148 S m−1 and an outstanding EMI shielding effectiveness of around 33 dB in the X‐band are achieved for the epoxy nanocomposite with 0.66 wt% of CNT sponge, which is higher than that achieved for epoxy nanocomposites with 20 wt% of conventional CNTs. More importantly, the CNT sponge provides a dual advantage over conventional CNTs in its prominent reinforcement and toughening of the epoxy composite. Only 0.66 wt% of CNT sponge significantly increases the flexural and tensile strengths by 102% and 64%, respectively, as compared to those of neat epoxy. Moreover, the nanocomposite shows a 250% increase in tensile toughness and a 97% increase in elongation at break. These results indicate that CNT sponge is an ideal functional component for mechanically strong and high‐performance EMI‐shielding nanocomposites.
High‐performance electromagnetic interference shielding epoxy nanocomposites are prepared using a preformed highly porous and electrically conductive CNT sponge. The CNT sponge acts as the three‐dimensional conducting framework and as effective reinforcement. Only 0.66 wt% of CNT sponge leads to an outstanding EMI shielding effectiveness of around 33 dB in the X‐band, and vast increments in the flexural strength and tensile toughness are achieved. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.201503782 |