Detecting climate signals in precipitation extremes from TRMM (1998–2013)—Increasing contrast between wet and dry extremes during the “global warming hiatus”

We investigate changes in daily precipitation extremes using Tropical Rainfall Measuring Mission (TRMM) data (1998–2013), which coincides with the “global warming hiatus.” Results show a change in probability distribution functions of local precipitation events (LPEs) during this period consistent w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2016-02, Vol.43 (3), p.1340-1348
Hauptverfasser: Wu, Huey‐Tzu Jenny, Lau, William K.‐M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate changes in daily precipitation extremes using Tropical Rainfall Measuring Mission (TRMM) data (1998–2013), which coincides with the “global warming hiatus.” Results show a change in probability distribution functions of local precipitation events (LPEs) during this period consistent with previous global warming studies, indicating increasing contrast between wet and dry extremes, with more intense LPE, less moderate LPE, and more dry (no rain) days globally. Analyses for land and ocean separately reveal more complex and nuanced changes over land, characterized by a strong positive trend (+12.0% per decade, 99% confidence level (c.l.)) in frequency of extreme LPEs over the Northern Hemisphere extratropics during the wet season but a negative global trend (−6.6% per decade, 95% c.l.) during the dry season. A significant global drying trend (3.2% per decade, 99% c.l.) over land is also found during the dry season. Regions of pronounced increased dry events include western and central U.S., northeastern Asia, and Southern Europe/Mediterranean. Key Points TRMM data reveal more heavy rain, less moderate rain, and more dry days during 1998–2013 Increase contrasts during 1998–2013 in extreme wet and dry conditions over land regions Global precipitation changes persisted during “warming hiatus”
ISSN:0094-8276
1944-8007
DOI:10.1002/2015GL067371